Extensions 1→N→G→Q→1 with N=C24 and Q=C3×S3

Direct product G=N×Q with N=C24 and Q=C3×S3
dρLabelID
S3×C23×C696S3xC2^3xC6288,1043

Semidirect products G=N:Q with N=C24 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C241(C3×S3) = A4×S4φ: C3×S3/C1C3×S3 ⊆ Aut C24169+C2^4:1(C3xS3)288,1024
C242(C3×S3) = A4≀C2φ: C3×S3/C1C3×S3 ⊆ Aut C2486+C2^4:2(C3xS3)288,1025
C243(C3×S3) = C3×A4⋊D4φ: C3×S3/C3S3 ⊆ Aut C24366C2^4:3(C3xS3)288,906
C244(C3×S3) = C2×C6×S4φ: C3×S3/C3S3 ⊆ Aut C2436C2^4:4(C3xS3)288,1033
C245(C3×S3) = C3×C22⋊S4φ: C3×S3/C3S3 ⊆ Aut C24246C2^4:5(C3xS3)288,1035
C246(C3×S3) = (C22×S3)⋊A4φ: C3×S3/C3C6 ⊆ Aut C24246C2^4:6(C3xS3)288,411
C247(C3×S3) = A4×C3⋊D4φ: C3×S3/C3C6 ⊆ Aut C24366C2^4:7(C3xS3)288,928
C248(C3×S3) = C22×S3×A4φ: C3×S3/S3C3 ⊆ Aut C2436C2^4:8(C3xS3)288,1037
C249(C3×S3) = S3×C22⋊A4φ: C3×S3/S3C3 ⊆ Aut C2436C2^4:9(C3xS3)288,1038
C2410(C3×S3) = C3×C244S3φ: C3×S3/C32C2 ⊆ Aut C2424C2^4:10(C3xS3)288,724
C2411(C3×S3) = C2×C6×C3⋊D4φ: C3×S3/C32C2 ⊆ Aut C2448C2^4:11(C3xS3)288,1002

Non-split extensions G=N.Q with N=C24 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C24.(C3×S3) = C6×A4⋊C4φ: C3×S3/C3S3 ⊆ Aut C2472C2^4.(C3xS3)288,905
C24.2(C3×S3) = C2×Dic3×A4φ: C3×S3/S3C3 ⊆ Aut C2472C2^4.2(C3xS3)288,927
C24.3(C3×S3) = C6×C6.D4φ: C3×S3/C32C2 ⊆ Aut C2448C2^4.3(C3xS3)288,723
C24.4(C3×S3) = Dic3×C22×C6central extension (φ=1)96C2^4.4(C3xS3)288,1001

׿
×
𝔽